Vector Joining Two Points
Vector \(\overrightarrow{AB}\) is shifted without rotation and placed at origin.

Now vector \(\overrightarrow{AB}=\overrightarrow{OC}\).
Since \(|\overrightarrow{AB}|=|\overrightarrow{OC}|\), coordinates of point C are (x₂ – x₁, y₂ – y₁, z₂ – z₁)
Hence, Vector \(\overrightarrow{OC}=\left( {{x}_{2}}-{{x}_{1}} \right)i+\left( {{y}_{2}}-{{y}_{1}} \right)j+\left( {{z}_{2}}-{{z}_{1}} \right)k\),
\(\overrightarrow{AB}=\overrightarrow{OC}=\left( {{x}_{2}}-{{x}_{1}} \right)i+\left( {{y}_{2}}-{{y}_{1}} \right)j+\left( {{z}_{2}}-{{z}_{1}} \right)k\),
\(=\overrightarrow{OB}-\overrightarrow{OA}\).
= Position vector of B – Position vector of A
Also, from above, we have \(\overrightarrow{OB}=\overrightarrow{OA}+\overrightarrow{AB}\) which describes triangle rule of vector addition.
Further \(\overrightarrow{OB}=\overrightarrow{OA}+\overrightarrow{AB}=\overrightarrow{OC}+\overrightarrow{OA}\) \(\left( \because \ \ \overrightarrow{OC}=\overrightarrow{AB} \right)\).
Example: if \(2\overrightarrow{AC}=3\overrightarrow{CB}\), then prove that \(2\overrightarrow{OA}+3\overrightarrow{OB}=5\overrightarrow{OC}\) Where O is the origin
Solution:
Given that \(2\overrightarrow{AC}=3\overrightarrow{CB}\),
\(2\left( \overline{OC}-\overline{OA} \right)=3\left( \overline{OB}-\overline{OC} \right)\),
\(2\overrightarrow{OA}+3\overrightarrow{OB}=5\overrightarrow{OC}\).