Sum of Sines or Cosines of n Angles in A.P

Sum of Sines or Cosines of n Angles in A.P

\(\sin \alpha +\sin \left( \alpha +\beta  \right)+\sin \left( \alpha +2\beta  \right)+…+\sin \left( \alpha +\left( n-1
\right)\beta  \right)=\frac{\sin
\frac{n\beta }{2}}{\sin \frac{\beta }{2}}\times \sin \left( \alpha +\left( n-1
\right)\frac{\beta }{2} \right)\).

Proof: Let S = sinα + sin(α + β) + sin(α + 2β) + . . . + sin( α + (n – 1)β)

Here angles are in A.P and common difference of angles in β

\(=\frac{\sin \frac{n\beta }{2}}{\sin \frac{\beta }{2}}\times \sin \left( \frac{First\ angle\ \ +\ \ last\ \ angle}{2} \right)\).

multiplying both sides by 2sin(β/2), we get

2sin(β/2) S = sinα 2sin(β/2) + sin (α + β) 2sin(β/2) + sin (α + 2β) 2sin(β/2) + . . . + sin (α + (n – 1) β) 2sin(β/2)

(Since 2 sinA sinB = cos (A – B) – cos (A + B))

\(2sin\alpha \text{ sin}\left( \frac{\beta }{2} \right)=\cos \left( \alpha -\frac{\beta }{2} \right)-\cos \left( \alpha +\frac{\beta }{2} \right)\),

\(2sin\left( \alpha +\beta  \right)\text{ sin}\left( \frac{\beta }{2}
\right)=\cos \left( \alpha +\beta -\frac{\beta }{2} \right)-\cos \left( \alpha
+\beta +\frac{\beta }{2} \right)\),

\(=\cos \left( \alpha +\frac{\beta }{2} \right)-\cos \left( \alpha +\frac{3\beta }{2} \right)\),

\(2sin\left( \alpha +2\beta  \right)\text{ sin}\left( \frac{\beta }{2}
\right)=\cos \left( \alpha +2\beta -\frac{\beta }{2} \right)-\cos \left( \alpha
+2\beta +\frac{\beta }{2} \right)\),

\(=\cos \left( \alpha +\frac{3\beta }{2} \right)-\cos \left( \alpha +\frac{5\beta }{2} \right)\),

From above equations,

\(2\sin \left( \frac{\beta }{2} \right)S=\cos \left( \alpha -\frac{\beta }{2} \right)-\cos \left( \alpha +\left( 2n-1 \right)\frac{\beta }{2} \right)\),

\(2\sin \left( \frac{\beta }{2} \right)S=2\sin \left( \alpha +\left( n-1 \right)\frac{\beta }{2} \right)\sin \left( \frac{n\beta }{2} \right)\),

\(S=\frac{\sin \left( \frac{n\beta }{2} \right)}{\sin \left( \frac{\beta }{2} \right)}\sin \left( \alpha +\left( n-1 \right)\frac{\beta }{2} \right)\),

In the above result, replacing α by π/2 + α, we get

\(\cos \alpha +\cos \left( \alpha +\beta  \right)+\cos \left( \alpha +2\beta  \right)+…+\cos \left( \alpha +\left( n-1
\right)\beta  \right)=\frac{\sin
\frac{n\beta }{2}}{\sin \frac{\beta }{2}}\cos \left( \alpha +\left( n-1
\right)\frac{\beta }{2} \right)\).

Hence proved.

Example: Find the value of  \(\cos \left( \frac{2\pi }{7} \right)+\cos \left( \frac{4\pi }{7} \right)+\cos \left( \frac{6\pi }{7} \right)\).

Solution: Given that \(\cos \left( \frac{2\pi }{7} \right)+\cos \left( \frac{4\pi }{7} \right)+\cos \left( \frac{6\pi }{7} \right)\),

\(S=\frac{\sin \left( \frac{n\beta }{2} \right)}{\sin \left( \frac{\beta }{2} \right)}\sin \left( \alpha +\left( n-1 \right)\frac{\beta }{2} \right)\),

\(=\frac{\sin \left( 3\frac{\pi }{7} \right)}{\sin \left( \frac{\pi }{7} \right)}\cos \left( \frac{\pi }{7}+\frac{3\pi }{7} \right)\),

\(=\frac{2\sin \left( \frac{3\pi }{7} \right)\cos \left( \frac{4\pi }{7} \right)}{2\sin \left( \frac{\pi }{7} \right)}\),

\(=\frac{\sin \left( \frac{7\pi }{7} \right)-\sin \left( \frac{\pi }{7} \right)}{2\sin \left( \frac{\pi }{7} \right)}=-\frac{1}{2}\).