Properties of Vector Addition

Properties of Vector Addition

1. Communitive property

\(\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{b}+\overrightarrow{a}\).

2. Associative property

\(\left( \overrightarrow{a}+\overrightarrow{b} \right)+\overrightarrow{c}=\overrightarrow{a}+\left( \overrightarrow{b}+\overrightarrow{c} \right)\).

3. Additive identity

\(\overrightarrow{a}+\overrightarrow{0}=\overrightarrow{a}\).

4. Additive inverse

\(\overrightarrow{a}+\left( -\overrightarrow{a} \right)=\overrightarrow{0}\).

5. \(\left| \overrightarrow{a}+\overrightarrow{b} \right|\le \left| \overrightarrow{a} \right|+\left| \overrightarrow{b} \right|\)and \(\left| \overrightarrow{a}-\overrightarrow{b} \right|\ge \left| \overrightarrow{a} \right|-\left| \overrightarrow{b} \right|\).

Examples 1: If vector \(\overrightarrow{a}+\overrightarrow{b}\) bisects the angle between \(\overrightarrow{a}\) and \(\overrightarrow{b}\), then prove that \(\left| \overrightarrow{a} \right|=\left| \overrightarrow{b} \right|\).

Solution: We know that vector \(\overrightarrow{a}+\overrightarrow{b}\) is along the diagonal of the parallelogram whose adjacent sides are vectors \(\overrightarrow{a}\) and \(\overrightarrow{b}\).

Now if \(\overrightarrow{a}+\overrightarrow{b}\) bisects the angle between vector \(\overrightarrow{a}\) and \(\overrightarrow{b}\), then the parallelogram must be a rhombus

Hence  \(\left| \overrightarrow{a} \right|=\left| \overrightarrow{b} \right|\).

Example 2: \(\overrightarrow{AO}+\overrightarrow{OB}=\overrightarrow{BO}+\overrightarrow{OC}\), then prove that B is the midpoint of AC.

Solution: Given that \(\overrightarrow{AO}+\overrightarrow{OB}=\overrightarrow{BO}+\overrightarrow{OC}\),

\(\overrightarrow{AB}=\overrightarrow{BC}\),

Thus, vectors \(\overrightarrow{AB}\) and \(\overrightarrow{BC}\) are collinear

Point A, B, C are collinear

\(\overrightarrow{AB}=\overrightarrow{BC}\),

B is the midpoint of AC.

Example 3: ABCDE is a pentagon prove that the resultant of forces \(\overrightarrow{AB},\ \overrightarrow{AE},\ \overrightarrow{BC},\ \overrightarrow{DC},\ \overrightarrow{ED}\) and \(\overrightarrow{AC}\) is \(3\overrightarrow{AC}\).

Solution: Given that \(\overrightarrow{AB},\ \overrightarrow{AE},\ \overrightarrow{BC},\ \overrightarrow{DC},\ \overrightarrow{ED}\),

\(R=\overrightarrow{AB}+\ \overrightarrow{AE}+\overrightarrow{BC}+\ \overrightarrow{DC}+\ \overrightarrow{ED}+\overrightarrow{AC}\),

\(=\left( \overrightarrow{AB}+\overrightarrow{BC} \right)+\left( \overrightarrow{AE}+\overrightarrow{BD}+\overrightarrow{DC} \right)+\left( \overrightarrow{AC} \right)\),

\(\overrightarrow{AC}+\overrightarrow{AC}+\overrightarrow{AC}=3\overrightarrow{AC}\).