GAUSS JORDEN METHOD

Gauss Jorden Method

Let a₁x + b₁y + c₁z = d₁, a₂x + b₂y + c₂z = d₂, a₃x + b₃y + c₃z = d₃ these equation are system linear equations. If the augmented matrix \(\left[ \begin{matrix}{{a}_{1}} & {{b}_{1}} & {{c}_{1}} & {{d}_{1}}  \\{{a}_{2}} & {{b}_{2}} & {{c}_{2}} & {{d}_{2}}  \\{{a}_{3}} & {{b}_{3}} & {{c}_{3}} & {{d}_{3}}  \\{{a}_{4}} & {{b}_{4}} & {{c}_{4}} & {{d}_{4}}  \\\end{matrix} \right]\) can be reduced to the to the form \(\left[ \begin{matrix}1 & 0 & 0 & \alpha   \\0 & 1 & 0 & \beta   \\0 & 0 & 1 & \gamma   \\\end{matrix} \right]\) by using elementary row transformation then x = α , y = β and z = γ is the solution of linear equation.

Example: Solve the equation x + y + z = 9, 2x + 5y + 7z = 52, and 2x + y – z = 0 by GAUSS JORDENMETHOD

Solution: Given system linear equations are x + y + z = 9, 2x + 5y + 7z = 52, and 2x + y – z = 0.

Now we can written as matrix form and apply elementary row transformation.

A = \(\left[ \begin{matrix}1 & 1 & 1 & 9  \\2 & 5 & 7 & 52  \\2 & 1 & -1 & 0  \\\end{matrix} \right]\).

R₂ → R₂ – R₁

R₃ → R₃ – R₁

\(\sim \left[ \begin{matrix}1 & 1 & 1 & 9  \\0 & 3 & 5 & 34  \\0 & -1 & -3 & -18  \\\end{matrix} \right]\).

R₁ → 3R₁ – R₂

R₃ → 3R₃ + R₂

\(\sim \left[ \begin{matrix}3 & 0 & -2 & -7  \\0 & 3 & 5 & 34  \\0 & 0 & -4 & -20  \\\end{matrix} \right]\).

R₃ → -1/4 R₃

\(\sim \left[ \begin{matrix}3 & 0 & -2 & -7  \\0 & 3 & 5 & 34  \\0 & 0 & 1 & 5  \\\end{matrix} \right]\).

R₁ → R₁ +2 R₃

R₂ → R₂ – 5 R₃

\(\sim \left[ \begin{matrix}3 & 0 & 0 & 3  \\0 & 3 & 0 & 9  \\0 & 0 & 1 & 5  \\\end{matrix} \right]\).

R₁→R₁/3

R₂→R₂/3

\(\sim \left[ \begin{matrix}1 & 0 & 0 & 1  \\0 & 1 & 0 & 3  \\0 & 0 & 1 & 5  \\\end{matrix} \right]\).

Therefore x = 1, y = 3 and z = 5 is the solution.