Differentiation of Determinants

Differentiation of Determinants

If \(y=\left| \begin{matrix}   f(x) & g(x) & h(x)  \\   p(x) & q(x) & r(x)  \\   u(x) & v(x) & w(x)  \\\end{matrix} \right|\)

Then, \(\frac{dy}{dx}=\left| \begin{matrix}   f'(x) & g'(x) & h'(x)  \\   p(x) & q(x) & r(x)  \\   u(x) & v(x) & w(x)  \\\end{matrix} \right|+\left| \begin{matrix}   f(x) & g(x) & h(x)  \\   p'(x) & q'(x) & r'(x)  \\   u(x) & v(x) & w(x)  \\\end{matrix} \right|+\left| \begin{matrix}   f(x) & g(x) & h(x)  \\   p(x) & q(x) & r(x)  \\   u'(x) & v'(x) & w'(x)  \\\end{matrix} \right|\)

i.e., to differentiate a determinant, differentiate one row (or column) at a time, keeping other unchanged.

Example: If \(f(x)=\left| \begin{matrix}   x & {{x}^{2}} & {{x}^{3}}  \\   1 & 2x & 3{{x}^{2}}  \\   0 & 2 & 6x  \\\end{matrix} \right|\), then f’(x) is equal to

Solution:

∵ \(f(x)=\left| \begin{matrix}   x & {{x}^{2}} & {{x}^{3}}  \\   1 & 2x & 3{{x}^{2}}  \\   0 & 2 & 6x  \\\end{matrix} \right|\)

∴ \(f'(x)=\left| \begin{matrix}   x & {{x}^{2}} & {{x}^{3}}  \\   0 & 2x & 3{{x}^{2}}  \\   0 & 2 & 6x  \\\end{matrix} \right|+\left| \begin{matrix}   x & 2x & {{x}^{3}}  \\   1 & 2 & 3{{x}^{2}}  \\   0 & 0 & 6x  \\\end{matrix} \right|+\left| \begin{matrix}   x & {{x}^{2}} & 3{{x}^{2}}  \\   1 & 2x & 6x  \\0 & 2 & 6  \\\end{matrix} \right|\)

= 1(12x² – 6x²) + 6x (2x – 2x) – 2(6x² – 3x²) + 6 (2x² – x²)

= 6x² + 0 – 6x² + 6x² = 6x².

If \(y=\left| \begin{matrix}   f(x) & g(x) & h(x)  \\   p(x) & q(x) & r(x)  \\   u(x) & v(x) & w(x)  \\\end{matrix} \right|\)

Then, \(\frac{dy}{dx}=\left| \begin{matrix}   f'(x) & g'(x) & h'(x)  \\   p(x) & q(x) & r(x)  \\   u(x) & v(x) & w(x)  \\\end{matrix} \right|+\left| \begin{matrix}   f(x) & g(x) & h(x)  \\   p'(x) & q'(x) & r'(x)  \\   u(x) & v(x) & w(x)  \\\end{matrix} \right|+\left| \begin{matrix}   f(x) & g(x) & h(x)  \\   p(x) & q(x) & r(x)  \\   u'(x) & v'(x) & w'(x)  \\\end{matrix} \right|\)

i.e., to differentiate a determinant, differentiate one row (or column) at a time, keeping other unchanged.

Example: If \(f(x)=\left| \begin{matrix}   x & {{x}^{2}} & {{x}^{3}}  \\   1 & 2x & 3{{x}^{2}}  \\   0 & 2 & 6x  \\\end{matrix} \right|\), then f’(x) is equal to

Solution:

∵ \(f(x)=\left| \begin{matrix}   x & {{x}^{2}} & {{x}^{3}}  \\   1 & 2x & 3{{x}^{2}}  \\   0 & 2 & 6x  \\\end{matrix} \right|\)

∴ \(f'(x)=\left| \begin{matrix}   x & {{x}^{2}} & {{x}^{3}}  \\   0 & 2x & 3{{x}^{2}}  \\   0 & 2 & 6x  \\\end{matrix} \right|+\left| \begin{matrix}   x & 2x & {{x}^{3}}  \\   1 & 2 & 3{{x}^{2}}  \\   0 & 0 & 6x  \\\end{matrix} \right|+\left| \begin{matrix}   x & {{x}^{2}} & 3{{x}^{2}}  \\   1 & 2x & 6x  \\0 & 2 & 6  \\\end{matrix} \right|\)

= 1(12x² – 6x²) + 6x (2x – 2x) – 2(6x² – 3x²) + 6 (2x² – x²)

= 6x² + 0 – 6x² + 6x² = 6x².