Determinants – Problems

Determinants – Problems

Example 1: Prove that the value of the determinant \(\left| \begin{matrix} -7 & 5+3i & \frac{2}{3}-4i \\   5-3i & 8 & 4+5i  \\   \frac{2}{3}+4i & 4-5i & 9  \\\end{matrix} \right|\) is real.

Solution: Let \(z=\left| \begin{matrix}   -7 & 5+3i & \frac{2}{3}-4i  \\   5-3i & 8 & 4+5i  \\   \frac{2}{3}+4i & 4-5i & 9  \\\end{matrix} \right|\) … (1)

To prove that this number (z) is real, we have to prove that \(\overline{z}=z\)

Now we know that conjugate of complex number is distributive over all algebraic operations.

Hence, to take conjugate of z in (1), we need not to expand determinant.

To get the conjugate of z, we can take conjugate of each element of determinant. Thus, \(\overline{z}=\left| \begin{matrix}   -7 & 5-3i & \frac{2}{3}+4i  \\   5+3i & 8 & 4-5i  \\   \frac{2}{3}-4i & 4+5i & 9  \\\end{matrix} \right|\) … (2)

Now interchanging rows into columns (taking transpose) in (2)

We have \(\overline{z}=\left| \begin{matrix}   -7 & 5+3i & \frac{2}{3}-4i  \\   5-3i & 8 & 4+5i  \\   \frac{2}{3}+4i & 4-5i & 9  \\\end{matrix} \right|\) … (3)

Or \(\overline{z}=z\) [from (1) and (3)] (4)

Hence, z is purely real.

Example 2: If ar = (cos2rπ + isin2rπ)¹/⁹, then prove that \(\left| \begin{matrix} {{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\   {{a}_{4}} & {{a}_{5}} & {{a}_{6}}  \\   {{a}_{7}} & {{a}_{8}} & {{a}_{9}}  \\\end{matrix} \right|=0\).

Solution: ar = (cos2rπ + isin2rπ)¹/⁹ = \({{e}^{i\frac{2r\pi }{9}}}\).

\(\left| \begin{matrix}   {{a}_{1}} & {{a}_{2}} & {{a}_{3}}  \\   {{a}_{4}} & {{a}_{5}} & {{a}_{6}}  \\   {{a}_{7}} & {{a}_{8}} & {{a}_{9}}  \\\end{matrix} \right|\).

\(=\left| \begin{matrix}   {{e}^{i\frac{2\pi }{9}}} & {{e}^{i\frac{4\pi }{9}}} & {{e}^{i\frac{6\pi }{9}}}  \\   {{e}^{i\frac{8\pi }{9}}} & {{e}^{i\frac{10\pi }{9}}} & {{e}^{i\frac{12\pi }{9}}}  \\   {{e}^{i\frac{14\pi }{9}}} & {{e}^{i\frac{16\pi }{9}}} & {{e}^{i\frac{18\pi }{9}}}  \\\end{matrix} \right|\).

\(={{e}^{i\frac{6\pi }{9}}}\left| \begin{matrix}   {{e}^{i\frac{2\pi }{9}}} & {{e}^{i\frac{4\pi }{9}}} & {{e}^{i\frac{6\pi }{9}}}  \\   {{e}^{i\frac{8\pi }{9}}} & {{e}^{i\frac{10\pi }{9}}} & {{e}^{i\frac{12\pi }{9}}}  \\   {{e}^{i\frac{14\pi }{9}}} & {{e}^{i\frac{16\pi }{9}}} & {{e}^{i\frac{18\pi }{9}}}  \\\end{matrix} \right|\) [taking \({{e}^{i\frac{6\pi }{9}}}\) common from R₂

= 0 [R₁ and R₂ are identical].

Example 3: Without expanding the determinants, prove that \(\left| \begin{matrix} 103 & 115 & 114 \\   111 & 108 & 106  \\   104 & 113 & 116  \\\end{matrix} \right|+\left| \begin{matrix}   113 & 116 & 104  \\   108 & 106 & 111  \\   115 & 114 & 103  \\\end{matrix} \right|=0\).

Solution: \(\underset{{{D}_{1}}}{\mathop{D=\left| \begin{matrix}   103 & 115 & 114  \\   111 & 108 & 106  \\   104 & 113 & 116  \\\end{matrix} \right|}}\,+\underset{{{D}_{2}}}{\mathop{\left| \begin{matrix}   113 & 116 & 104  \\   108 & 106 & 111  \\   115 & 114 & 103  \\\end{matrix} \right|}}\,\).

In D₂, interchanging C₁ and C₃,

\(\underset{{{D}_{1}}}{\mathop{D=\left| \begin{matrix}   103 & 115 & 114  \\   111 & 108 & 106  \\   104 & 113 & 116  \\\end{matrix} \right|}}\,-\underset{{{D}_{2}}}{\mathop{\left| \begin{matrix}   104 & 116 & 113  \\   111 & 106 & 108  \\   103 & 114 & 115  \\\end{matrix} \right|}}\,\).

In D₂, interchanging C₂ and C₃,

\(\underset{{{D}_{1}}}{\mathop{D=\left| \begin{matrix}   103 & 115 & 114  \\   111 & 108 & 106  \\   104 & 113 & 116  \\\end{matrix}\right|}}\,+\underset{{{D}_{2}}}{\mathop{\left| \begin{matrix}   104 & 113 & 116  \\   111 & 108 & 106  \\   103 & 115 & 114  \\\end{matrix} \right|}}\,\).

In D₂, interchanging R₁ and R₃,

\(\underset{{{D}_{1}}}{\mathop{D=\left| \begin{matrix}   103 & 115 & 114  \\   111 & 108 & 106  \\   104 & 113 & 116  \\\end{matrix} \right|}}\,-\underset{{{D}_{2}}}{\mathop{\left| \begin{matrix}   103 & 115 & 114  \\   111 & 108 & 106  \\   104 & 113 & 116  \\\end{matrix} \right|=0}}\,\).