Vector Along the Bisector of Given Two Vectors

Vector Along the Bisector of Given Two Vectors

We know that the diagonal in a parallelogram is not necessarily the bisector of the angle formed by two adjacent sides. However, the diagonal in a rhombus bisects the angle between the two adjacent sides.

Consider vectors \(\overrightarrow{AB}=\overrightarrow{a}\) and \(\overrightarrow{AD}=\overrightarrow{b}\) forming a parallelogram ABCD as shown in figure.

Vector Along the Bisector of Given Two Vectors

Consider the two unit vector along the given vectors, which form a rhombus AB’C’D’.

Now \(\overrightarrow{AB’}=\frac{\overrightarrow{a}}{\left| \overrightarrow{a} \right|}\) and \(\overrightarrow{AD’}=\frac{\overrightarrow{b}}{\left| \overrightarrow{b} \right|}\).

\(\overrightarrow{AC’}=\frac{\overrightarrow{a}}{\left| \overrightarrow{a} \right|}+\frac{\overrightarrow{b}}{\left| \overrightarrow{b} \right|}\),

So, any vector along the bisector is \(\lambda \left( \frac{\overrightarrow{a}}{\left| \overrightarrow{a} \right|}+\frac{\overrightarrow{b}}{\left| \overrightarrow{b} \right|} \right)\).

Similarly, any vector along the external bisector is \(\overrightarrow{AC’}=\lambda \left( \frac{\overrightarrow{a}}{\left| \overrightarrow{a} \right|}+\frac{\overrightarrow{b}}{\left| \overrightarrow{b} \right|} \right)\).

Example: Find a unit vector \(\overrightarrow{c}\) if -i + j – k bisects the angle between vector \(\overrightarrow{c}\) and 3i + 4j.

Solution: Let \(\overrightarrow{c}=xi+yj+zk\),

Where x² + y² + z² = 1 … (1)

Unit vector along 3i + 4j is \(\frac{3i+4j}{\sqrt{{{(3)}^{2}}+{{(4)}^{2}}}}=\frac{3i+4j}{5}\),

The bisector of these two is -i + j – k (given)

Therefore, \(-i+j-k=\lambda \left( xi+yj+zk+\frac{3i+4j}{5} \right)\),

\(-i+j-k=\frac{1}{5}\lambda \left( (5x+3)i+(5y+4)j+5zk \right)\),

\(\frac{\lambda }{5}(5x+3)=-1\),

\(\frac{\lambda }{5}(5y+4)=1\),

\(\frac{\lambda }{5}(5z)=-1\),

\(x=-\frac{5+3\lambda }{5\lambda }\),

\(y=\frac{5-4\lambda }{5\lambda }\),

\(z=-\frac{1}{\lambda }\),

Putting these values in (1) i.e., we get

\({{(5+3\lambda )}^{2}}+{{(5-4\lambda )}^{2}}+25=25{{\lambda }^{2}}\),

\(25{{\lambda }^{2}}-10\lambda +75=25{{\lambda }^{2}}\),

\(\lambda =\frac{15}{2}\).

\(\overrightarrow{c}=\frac{1}{15}(-11i+10j-2k)\).