Differentiation by Substitution Methods

Differentiation by Substitution Methods

Substitution is useful to reduce the function into simple form. For problems involving inverse trigonometric functions, first try for a suitable substitution to simplify it and then differentiate it. If no such substitution is found, then differentiate directly. Some standard substitutions are given below.

S.No

Expressions

Substitutions

1

\(\sqrt{{{a}^{2}}+{{x}^{2}}}\) x = atanθ or x = acosθ
2 \(\sqrt{{{a}^{2}}-{{x}^{2}}}\)

x = asinθ or x = acosθ

3

\(\sqrt{{{x}^{2}}-{{a}^{2}}}\) x = asecθ or x = acosecθ
4 \(\frac{a+x}{a-x}\) or \(\frac{a-x}{a+x}\)

x = atanθ

5

\(\sqrt{\frac{a+x}{a-x}}\) or \(\sqrt{\frac{a-x}{a+x}}\) x = acosθ
6 \(\frac{2x}{1+{{x}^{2}}}\) or \(\frac{2x}{1-{{x}^{2}}}\)

x = atanθ

7

acosx + bcosx a = rcosα, b = rsinα
8 \(\sqrt{x-\alpha }\) and \(\sqrt{\beta -x}\)

x = αsin²θ + βcos²θ

9

\(\sqrt{2ax-{{x}^{2}}}\)

x = a(1 – cosθ)

Example: Find the derivative of \({{\tan }^{-1}}\left[ \frac{\sqrt{1+{{x}^{2}}}+\sqrt{1-{{x}^{2}}}}{\sqrt{1+{{x}^{2}}}-\sqrt{1-{{x}^{2}}}} \right]\) with respect to x.

Solution: Assume x² = cos2θ to simplify and then use the relation 1 + cos2θ = 2cos²θ and 1 -cos2θ = 2sin²θ to simplify the relation.

On putting x² = cos2θ   we get

\(y={{\tan }^{-1}}\left[ \frac{\sqrt{1+\cos 2\theta }+\sqrt{1-\cos 2\theta }}{\sqrt{1+\cos 2\theta }-\sqrt{1-\cos 2\theta }} \right]\),

⇒ \(y\,=\,{{\tan }^{-1}}\left[ \frac{\sqrt{2{{\cos }^{2}}\theta }+\sqrt{2{{\sin }^{2}}\theta }}{\sqrt{2{{\cos }^{2}}\theta }-\sqrt{2{{\sin }^{2}}\theta }} \right]\),

⇒ \(y\,=\,{{\tan }^{-1}}\left[ \frac{\cos \theta +\sin \theta }{\cos \theta -\sin \theta } \right]\,=\,{{\tan }^{-1}}\left[ \frac{1+\tan \theta }{1-\tan \theta } \right]\),

⇒ \(y\,=\,{{\tan }^{-1}}\left[ \tan \left( \frac{\pi }{4}+\theta  \right) \right]\),

⇒ \(y\,=\,\frac{\pi }{4}\,+\,\theta \),

⇒ \(y\,=\,\frac{\pi }{4}\,+\,\frac{1}{2}{{\cos }^{-1}}\,{{x}^{2}}\),

On differentiating with respect to x we get

∴ \(\frac{dy}{dx}\,=\,\frac{d}{dx}\left( \frac{\pi }{4} \right)\,+\,\frac{1}{2}\frac{d}{dx}\left( {{\cos }^{-1}}\,{{x}^{2}} \right)\),

⇒ \(\frac{dy}{dx}\,=\,0\,+\,\frac{1}{2}\frac{-1}{\sqrt{1-{{x}^{2}}}}\frac{d}{dx}\left( {{x}^{2}} \right)\),

⇒ \(\frac{dy}{dx}\,=\,-\frac{1}{2}\frac{2x}{\sqrt{1-{{x}^{4}}}}\,=\,\frac{-x}{\sqrt{1-{{x}^{4}}}}\).